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Abstract. The lattice dynamics of a one-dimensional diatomic lattice with nearest-neighbour 
interactions is examined with mathematical techniques involving the setting up and solving 
difference equations. The method gives the exact sets of analytical solutions for the normal 
modes of vibration. The theory of localised vibrational modes due to local imperfection is 
developed as a characteristic value problem. The approach seems to have advantages over 
previous methods used to solve local defect problems in lattices. 

1. Introduction 

The subject of the vibrations in both one-dimensional monotomic and diatomic lattices 
with nearest-neighbour interactions and with local imperfection has received con- 
siderable attention throughout the past few years. An enormous literature exists, which 
contains the different methods propounded to solve this lattice vibrational problem 

Recently a simple and effective method to examine the influence of defects in 
monatomic and diatomic lattices with nearest-neighbour, next-nearest-neighbour and 
more complex interactions, based on the solution of the difference equations, has been 
proposed [26]. This method shows how the lattice dynamics study draws naturally upon 
the operational method of solution for the difference equations, which gives the exact 
sets of solutions for the vibrational normal modes. Also an analytic method has been 
introduced to analyse the localised vibrational modes due to local imperfections as a 
characteristic value problem, which includes following the piecewise method and the 
matching conditions of the solution in the imperfection region. In this treatment simple 
formulae are obtained for the localised mode frequencies in an elementary and straight- 
forward way. 

The potential of a diatomic linear chain model with nearest-neighbour interactions to 
explain the optical absorption data in real crystals has been demonstrated by Lukovsky, 
Brodsky and Burstein ([27]; see also [23,25] and others [28]; see also [16, 18]), when 
they investigated local and gap mode frequencies in alkali halides and semiconductors 
as different atomic substituents were incorporated in these crystals. Lukovsky et al used 
the local mode analysis given by Mazur et al [17] and their results are in excellent 
agreement with those obtained from the full three-dimensional lattice dynamics cal- 
culations. So the linear chain model of point masses with nearest-neighbour coupling 
and with local imperfection is a surprisingly good model for theoretically predicting the 

[ 1-25]. 
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frequencies of the localised modes in real crystals. Thus, it is required to obtain the 
solution of this vibrational problem in a different form that is analytically closed following 
the finite difference method mentioned above. It is also necessary because this solution 
provides the mathematical basis to obtain the frequencies of the localised modes in a 
diatomic linear chain with different models of local imperfection. These findings can be 
compared with experimental results and are important because attempts to give an 
adequate and general theory meet great difficulties with other mathematical methods 
and crystal models [29]. The purpose of this paper is to present a more direct and 
intuitively obvious method to examine the lattice dynamics for a one-dimensional 
diatomic lattice with nearest-neighbour interactions via the standard mathematical 
techniques of solving finite difference equations [26,30]. Section 2 starts by giving an 
explanation of the operational method of solving difference equations for a perfect 
diatomic chain, and by performance of the transfer operator the sets of the general 
analytical solution are obtained. In § 3 a theory for the localised vibrational modes due 
to local imperfection is developed as a characteristic value problem. In order to illustrate 
the method it is applied to two cases: first, the very well known problem of the effect of an 
isotopicmass; and secondly, the single anomalous force constant as local imperfections in 
the lattice are solved in an easy manner. The conclusions are given in 8 4. 

2. General solution for the diatomic linear lattice 

In this section the operational method to solve the problem of a one-dimensional perfect 
diatomic lattice is proposed. It will be shown that the approach can give the exact 
solution, making it simpler to find the vibrational normal modes for the system. The 
time-independent equations of motion for this perfect diatomic lattice formed by equi- 
distant atoms of alternating masses m and M and nearest-neighbour interactions are 

(% + l )y ,  + (x - 2)x, = 0 

(2 - & X ) % Y ,  - (X + l)x, = 0 

(1) 

(2) 

for particles of mass m, and 

for atoms of mass M .  In equations (1) and (2), x = m w 2 / K  and E = M / m ,  and y ,  andx, 
denote the maximum displacements in the lattice of the particles of mass M and m, 
respectively. Also K is the force constant associated with central force interaction of 
nearest neighbours and U indicates the angular frequency of the normal modes of 
vibration. It also was necessary to make use of the transfer operator % [26,30-321. The 
system of equations (1) and (2) form a set of two homogeneous, simultaneous, linear, 
difference equations of the second order with constant coefficients and will be solved by 
using operational methods. Expressions for y,, and x, must be found in terms of E and x. 
From (1) and (2) by elimination a final equation involving only one of the variables with 
its differences and successive values will be obtained. Integration will give the general 
value of that variable and the equations employed in the process of elimination will allow 
the expression of the other dependent variable by means of it. If the coefficients are 
constants then the symbols can simply be separated and one can effect the eliminations 
as if those symbols were algebraic. Thus, the equation derived for the variable y ,  is 

( % 2  - s2% + l)y, = 0 (3) 
where 52 =  EX^ - 2 ( ~  + 1)x + 2. To integrate equation (3) the auxiliary (or charac- 
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teristic) equation of this difference equation is needed. The auxiliary equation is a 
quadratic algebraic equation. For present purposes, it is noteworthy that the form for 
the general solution of the pair (1) and (2) depends on the roots of the auxiliary algebraic 
equation. There are three cases: (a)  the roots El and E2 are real numbers and unequal; 
(b) the two roots are real and equal; and (c) the two roots are complex numbers. These 
exhaust the possibilities for a quadratic equation. 

In these cases the general solution of the couple (1) and (2) can be written for (a) 

y ,  = C1E; + C2Ez xtl = [(El,, + 1)/(2 - X > l Y t l  (4a) 
where C1 and C2 are arbitrary constants. From the auxiliary algebraic equation it is clear 
that in this case E1E2 = 1. Since the difference equations (1) and (2) are defined over 
sets of consecutive integers, then the solution (4a) is a linear combination of sequences. 
Only some of the more important aspects of these solutions in terms of the roots E, are 
mentioned: (i) if lEIl < 1, then the sequence converges; (ii) if IE,l > 1 then it diverges; 
(iii) if -1 < E, < 0, it is a damped oscillation; and (iv) if E, < -1 it oscillates infinitely. 
These types of solutions could be associated with localised vibrations in lattices with 
imperfections. Note from the auxiliary equation that El and E, are real and unequal 
when 52' > 4 and hence we obtain two cases: w > wo, where w o  = [2K(l/M + 1/~2)]~/* 
the top of the optical branch, and w > (2K/M)'I2 and w < (2K/m>'/'when M > m, or 
w > (2K/m)l/* and w < (2K/M)'i2 when M < m, the frequencies for unequal real roots 
are situated in the gap between the branches. From the derivation, it is obvious that the 
frequencies of the localised vibrations in a diatomic linear chain, i.e. the solution (4a) 
always lies above the top of the optical branch or in the forbidden gap between the 
branches of the perfect lattice. 

The general solution in the case (b) when there is a repeated root is 

Y ,  = (Cl + C2n)E; x,, = [(E, 4- 1)/(2 - X > I Y n  (4b) 
where C1 and C2 also are arbitrary constants. The behaviour of this solution is divergent 
if I Ell > 1 (unless both C1 and C2 are 0) or if IE,l = 1 (unless C2 = 0). Now consider the 
case I El I < 1. Then it can easily be proved that the sequence nE7 converges to 0. Thus, 
if lEll < 1, the sequence solution also converges to 0. It is oscillatory if El is negative. 
These solutions could be connected with vibrations whose frequencies are the edges of 
the branches. 

The case (c) has two complex roots that appear as a pair of complex conjugates. To 
write the general solution, observe that the maximum atomic displacements of the 
normal modes of vibration are real numbers and hence require solutions which have real 
number values for all n values for which they are defined. Then it is possible to show that 
if C1 and C2 are complex, y ,  and x,, are always real numbers. To prove this, all complex 
numbers E,,  E,, CI and C2 must be written in polar form. Thus using equation (4a) the 
following expression is obtained for the general solution: 

y,, = c cos(n0 + D )  x,, = - C[ ( E X  - 2 ) / ( x  - 2)]1'2 cos[(n + + ) o  + D ]  (4c) 
where C and D are arbitrary constants. The number 0 in equation (4c) is determined in 
terms of x and E and it is given by 

m ~ w ~  - 2K(M + m)w' + 2K2(1 - cos 8 )  = 0. ( 5 )  
Equation ( 5 )  is the well known dispersion relation for the frequency in a perfect diatomic 
linear lattice with nearest-neighbour interactions. The functions cos(n0 + 0)  and 
cos[(n + +)0  + D ]  in (4c) oscillate finitely, with the result that the first part of the 
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equation (4c) represents a wave propagating only through the particles of mass M, while 
the second represents a wave propagating only through those of mass m. The wavelengths 
and frequencies for a given disturbance are equal. The amplitudes of the two waves on 
the other hand are not equal. These particular solutions could be associated with 
vibrations in a perfect lattice or with the perturbed branch modes [18] (quasi-localised 
resonance behaviour). The shapes of the vibrational normal modes can be shown in the 
diatomic linear lattice using equation (4c), but this work for the perfect lattice is well 
known and a careful study of the atomic motion in this system has been given by many 
authors. The results are in accordance with those obtained by them and the reader is 
referred to the works of Brillouin [33] ,  Hori [7] ,  Dean [4] and Barker and Sievers [22] 
to complete this description. 

Another point of interest is the frequency distribution function of the normal 
vibrations. This can be calculated from (5) for a diatomic lattice consisting of 2Nparticles 
for which e (  6' = xj/N; j = t 1, k 2 ,  , . . , k N )  is regarded as a continuous parameter 
and can be written in the form 

d j  N +(1 - 2 v 2 / v i )  
- 

d v  n v o ~ 1 / 2  ((1 - ~ ~ / v ; ) l / ~ ( l  - [ ( E +  1 ) 2 / ~ ] ( v 2 / v i ) ( 1  - V ~ / V ; ) > ' / ~  

In ( 6 )  v is the frequency of the normal modes of vibration (U = 2 n v ) .  For v 
density of modes reduces to 

v0 this 

d j  N(M + m) 
d v nvo(mM)'/*' 
_ -  - 

This frequency distribution function had already been obtained by Dean [4] and Black- 
man [34]. 

The general solution, equations (4a), (4b) and (4c), contains the exact sets of analytic 
solutions for the vibrational normal modes in a diatomic linear lattice with nearest- 
neighbour interactions. It is striking that this approach does not involve heuristic solu- 
tions to obtain the general solution of the couple of equations (1) and ( 2 )  as had been 
done in all of the calculations mentioned previously [1-25]. 

3. Theory for localised vibrational modes 

To illustrate the difference equations method when local imperfection is introduced 
in the lattice, two simple models will be considered, in which the effect of a single 
localised defect on the ordered diatomic lattice can be easily analysed. It will be 
proposed then to obtain the solution of this problem as a characteristic value problem. 

3.1. Mass defect 

The first model of a local defect is a mass defect in the lattice. Some literature exists 
which contains discussions concerning the effect of a single impurity mass on the 
vibrations in a diatomic linear lattice with nearest-neighbour interactions [2, 6, 17, 22,  
35-38]. It is quite significant that in all the calculations mentioned above the math- 
ematical methods contain unnecessary complications, and therefore a more accessible 
and naive method is presented to solve this localised vibrational mode problem. 
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M m m M 

L1 X- 1 YO X Q  Y1 

Figure 1. Diatomic linear lattice with a local imperfection, a mass defect m' situated at 
site yo.  

In order to obtain the solution for the problem of the effect of a single impurity 
mass on the vibrational normal modes, briefly here as a boundary value problem, the 
atom of mass M is replaced at site y o  by one of mass m'. The diatomic lattice with 
local imperfection is sketched in figure 1. 

The condition of localisation for each part of the solution around defect y,,+ 0 
and xn-+ 0 as n-, ? x. prescribes the boundary conditions and the boundary value 
problem is posed. All solutions of the couple of equations (1) and (2) that simul- 
taneously satisfy the boundary conditions must be found. One solution is given by the 
trivial solution but the interest is on the possibility of finding non-trivial solutions of 
the characteristic value problem. 

Now, a piecewise solution will be introduced and the interval in which the pair of 
equations (1) and (2) of the perfect lattice are valid will be split into two parts: the 
set --CO s n < 0 and the set 0 < n s x.. The problem of setting up the solution for 
localised vibrations can be viewed as a question of matching the allowed solution on 
the two sides of the local imperfection. In each part, the general solution associated 
with the set of localised modes of the couple (1) and (2) is the equation (4a).  Clearly, 
the boundary conditions, i.e. the localisation condition of the solution around the 
defect, can be used in order to determine two of the coefficients. In the region 
- CC G n < 0, the only sequence that is permitted if y$*) and x$*) are not increased 
without limit as n+ - x is the sequence that converges. This determines one of the 
constants to be zero and in this region 

y i2)  = C,E<; n<O 

4i2) = C*[(El,* + 1)/(2 - x)lE,., 

In (7) ElE2 = 1 was used. Similarly, in the region to the right, 0 < n G x., y i l )  and 
xi1) satisfy equations (1) and (2) so the solution has the form 

-(n + 1) (7) nG-1. 

where only the sequence that decreases appears. Of course the other constant is zero, 
otherwise yL1) and .xi1) would increase without limit as n -, =. 

Seeing that the impurity atom forms a symmetry centre, all solutions of this problem 
can be divided into symmetric and antisymmetric. It is easy to show that the localised 
antisymmetric modes have only trivial solution. In this case the impurity mass is at 
rest in the y o  site. The previous result was pointed out by Mazur, Montroll and Potts 
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[17] .  The constants C1 and C2 are connected by the continuity of the solution. This 
blends the two parts of the solution, equations (7 )  and (8), suitably in the imperfection 
region. Since the proposed solution must be continuous at site y o  then C1 = Cz. As 
C1 is arbitrary, any constant multiple of yn and x, is also a solution of the boundary 
value problem. This arbitrary constant can be used for normalisation. 

Finally, to ensure that the solution on the two sides of the impurity atom, equations 
(7) and (S), join properly across the impurity, they must satisfy a suitable matching 
condition, which is provided by the equation of motion of the maximum displacement 
for the impurity atom m’ at site yo .  Only symmetric modes exist and non-trivial 
solutions are sought for this problem. So, if m’ = E,m and equations (7 )  and (8) are 
substituted in the equation of motion of the maximum displacement of the impurity 
atom, it is easily seen that 

E1.2 = (&,/2)X2 - (E, + l)x + 1. (9) 

Writing the roots of the auxiliary equation of equation (3 )  in terms of x and E and 
substituting into (9) gives the eigenvalue equation for the frequencies of the localised 
vibrations. Solving for these frequencies one obtains 

E,,(&, - 2 E ) 2  + 2[&,(2E - E,) + 2 E ] X  - 4(& + 1) = 0. (10) 

The reader is to be warned that in (10) appear roots that do not satisfy the 
localisation condition. A root must always be checked for appropriateness. Negative 
roots have no physical meaning and must be discarded. Once the frequency of the 
localised mode is known, the value of in equation (9) can be obtained and the 
eigenvector (maximum atomic displacements) can be calculated through equations (7 )  
and (8). 

Now a brief analysis of equation (10) is presented. For the special case m = M 
( E  = l ) ,  the monatomic lattice, the results obtained from (10) are in accordance with 
previous calculations. These are well known and a full analysis of this case has been 
made by many authors using several different mathematical techniques. The reader is 
referred to the original papers for details in the monatomic case [ 39 ] ;  see also [2 ,  4, 
6 , 8 , 9 ,  13,221. When the difference equations method explained previously is applied 
to this monatomic model the same results are obtained [31] .  

For the case m’ = M ,  E = E,, the perfect lattice, the eigenvalue equation (10) gives 
the frequencies of the edges of the branches. Equation (10) shows that as m’+ M the 
frequencies of the localised modes return to the edges of the branches. Observe that 
the solution for the edges of the branches (equation (4b)) with C2 = 0 is included in 
the solution (equation (4a)). This special solution does not satisfy the localisation 
condition, but it is mentioned in order to complete the picture. Using (9) and the 
values of the roots from (10) the corresponding eigenvectors of each mode are obtained 
from (7) and (8). The eigenvectors have a simple harmonic spatial dependence. At 
the top of the acoustic branch only the heavy atoms move, whereas at the bottom of 
the optical branch only the light atoms move. Finally, in the highest-frequency mode 
of the perfect lattice, the particle pairs move against each other. These results are in 
accordance with those obtained analytically by Brillouin [33] and numerically by 
Barker and Sievers [22] for the edge modes of the perfect lattice. 

An illustration of the dependence of the localised mode frequencies on the mass 
m’ and the relative magnitudes of the masses M and m for the perfect lattice obtained 
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Figure 2. The dependence on 
the impurity mass of the fre- 
quencies of the localised modes 
when a heavy mass and a light 
mass are replaced by an iso- 

2 /E 2 

0 E E E, topic impurity, respectively 

from equation (10) is shown schematically in figure 2. This dependence is also well 
known and may be summarised with the following statements: When substitution is 
made on the heavy mass ( E  > l ) ,  a lighter impurity mass ( E ,  < E )  produces two 
localised modes, a local mode with frequency situated above the optical branch and 
a gap mode with frequency situated above the acoustic branch but below the optical 
branch of the host lattice. When substituting with a heavier impurity for the heavier 
atom ( E ,  > E ) ,  no new localised modes, local or gap, are generated. On the other 
hand, when substituting for the lighter mass ( E  < 1) by a lighter impurity mass ( E ,  < E ) ,  

one gets a localised mode, which is a local mode, with a frequency that lies above the 
top of the optical branch. And a heavier mass ( E ,  > E )  causes a localised gap mode 
with frequency between optical and acoustic branches of the host lattice. In the case 
of replacing the heavy atom by a lighter mass, when two new localised modes appear 
simultaneously, for m' + 0, the local mode raises its frequency to a very high value. 
However, the frequency of gap mode shows a different behaviour. It approaches the 
centre of the forbidden gap. For both local and gap localised modes a reduction of 
the mass impurity m' increases their frequencies, and vice versa if the mass impurity 
m' is larger, the two values of the frequencies of these local and gap modes diminish 
and their frequencies return to the edges of the branches for m' = M .  The behaviour 
of the local mode frequency in the case of replacing the light host atom by a lighter 
one is like that described above for replacing the heavy atom by a lighter isotope. For 
m' --$ 0 the frequency increases to a very high value and it the mass m' is larger this 
frequency decreases and returns to the top of the optical branch for m' = M .  The 
other gap mode has its frequency in the gap between the optical and acoustic branches 
of the perfect lattice. This gap mode frequency diminishes its value from the top of 
the forbidden gap when the mass of the atomic impurity m' is equal to M ,  to the 
bottom of the gap as the substituted mass becomes very large m'+ =. These are 
exactly the results which have been obtained analytically by Mazur and co-workers 
[17], Maradudin and co-workers [ 2 ] ,  Sen and co-workers [35] and Andrade and co- 
workers [36-381, and numerically by Barker and Severs [22 ] ,  but all these calculations 
contain unnecessary complications in their mathematical techniques. 

The detailed nature of the localised mode will be examined by means of the 
investigation of the spatial form of this vibration. Figure 3 shows the eigenvector for 
the local mode in the case of replacing the heavy atom ( E  > 1). All atoms move against 
each other in the local mode. The form of the vibrational mode does not change 
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Figure 3. Local mode displacement pattern as a 
function of impurity mass when a heavy atom is 
replaced replaced 

Figure 4. Gap mode displacement pattern as a 
function of impurity mass when a heavy atom is 

abruptly with the variation of the mass m'. Rather, it evolves from the case when the 
particle pairs move in opposite directions to each other, the mode of maximum 
frequency of the perfect lattice and the mass impurity m' = M ,  to the case where there 
is practically no amplitude of displacement of any atom and the mass impurity tends 
to zero. In this case the atomic impurity is moving with large amplitude, whereas the 
impurity neighbours are moving with considerably less amplitude. For the gap mode, 
when substitution is made on the heavy mass ( E  > l), the eigenvector also has sequence 
spatial dependence. However, the displacement pattern is quite different in detail. 
All atoms move in pairs against each other and always maintain this displacement 
pattern. From m' = M ,  to m' = 0, this gap mode changes its form from the shape of 
the mode of maximum frequency of the perfect lattice where only heavy atoms are in 
motion to the so-called 'surface mode' coined by Mazur, Montroll and Potts [17]. In 
this gap mode the atom on each side of the atomic impurity only follows the mass 
impurity and the maximum atomic displacement of this mass impurity has a large 
amplitude. The impurity neighbours have considerably less amplitude. Note from 
figure 4 that for the gap mode the mass impurity plays almost no role in this type of 
motion. The maximum amplitude of displacement of the atoms in this mode falls to 
zero far from the impurity site. Mazur et a1 [17] interpreted the case m' = 0 in this 
mode in the following way: 'the lattice is reduced to two chains each with one end 
fixed and the other free'. Observe from figure 4 that when m' = 0 there is no relative 
displacement between the atomic impurity and its nearest neighbours, so that there is 
no force between them. The behaviour of the masses in this case confirms the 
interpretation of Mazur et al ,  for this like 'surface mode'. But, this procedure of 
interpretation is, however, physically unjustifiable because in this case, though the 
mass impurity is zero, there remains a force constant between the two chains. Indeed 
from a physical point of view the lattice cannot be broken into two independent 
portions and for this reason there is no surface. An analysis of the true surface mode 
has been given in detail by many workers [40]. 
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Figure 5.  Local mode displacement pattern as a 
function of impurity mass when a light dtom is 
replaced replaced 

Figure 6. Gap mode displacement pattern as a 
function of impurity mass when a light atom is 

It was mentioned previously that if the light host atom is replaced by a lighter one, 
then a local mode forms with a frequency above the maximum frequency of the perfect 
lattice. This mode is also localised spatially. Its eigenvector exhibits the impurity atom 
moving with large amplitude as compared with the amplitude of its neighbours. All 
atoms move against each other. It has a sequence eigenvector, with maximum ampli- 
tude which falls towards zero far from m'. One of the mode's properties is that it 
becomes more localised as m' -+ 0. Figure 5 presents the local mode displacement 
pattern as a function of m'. It also develops its form from the mode of maximum 
frequency of the perfect lattice when m' = M ,  to the very localised mode where only 
the atomic impurity m' has displacement different from zero, when m' -+ 0. Lastly, 
for the gap mode eigenvector, figure 6 shows the development of it from the minimum 
frequency mode of the optical branch where only the light atoms are moving when 
m' = M ,  to the case of the maximum frequency mode of the acoustic branch of the 
perfect lattice where only the heavy atoms move when m' + W .  In this limit the mass 
impurity does not have motion. This gap mode has a displacement pattern which is 
different from the displacement pattern of the gap mode discussed above. The results 
for eigenvectors complement those obtained numerically by Barker and Sievers [22] 
in a linear chain of 48 atoms using cyclic boundary conditions. 

3.2. Force-constant defect 

The next model of local imperfection consists of a single anomalous force constant. 
As before, it will also be proposed to obtain the solution of this problem as a 
characteristic value problem. There are many calculations [6, 16, 20, 22, 251 where 
force-constant changes were made in a linear diatomic lattice. Apparently, no work 
has been done on the calculation of frequencies and forms of the localised modes in 
a diatomic linear chain with a single anomalous force constant as a local imperfection. 
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Figure 7. Diatomic linear Lattice with a single force-constant defect. 

The solution of this problem is not only of interest in itself but also serves as an 
additional model to the range of specific imperfection models in the systems cited 
above [ 1-25]. 

Now the local imperfection will be considered by replacing one constant K of the 
perfect lattice by K' between the atoms of mass m at site and mass M at site yo .  
The imperfection model is shown in figure 7 .  The interval in which the pair of equations 
(1) and (2) are valid will be split into two parts: --ot. s n s -1 and 0 < n d x .  In order 
to solve the problem, use again one of the general solutions of the diatomic lattice 
(4a). Clearly, then, equation (7) is the solution for the interval --x d n G -1 and 
equation (8) is the solution for the interval 0 d n d 2.  

The two constants C1 and C2 are determined by the two matching conditions, 
which blend the two parts of the solution adequately in the imperfection region. The 
matching conditions are provided by the two equations of motion of the maximum 
displacement of the atoms m at site x - ~  and M at site y,. If K = K ' p  and by substituting 
(7) and (8) in the two equations of motion yields a set of two simultaneous linear 
equations in the two unk3owns C1 and C2. A non-trivial solution is required, so that 
it is necessary and sufficient for the determinant formed by the two unknowns to be 
zero. Expanding this gives for 

p(p - 1)E:,, + [ p b  + a ( p  - 1) + (x - 2)]E1,* + ab +x - 2 = 0 (11) 
where a = ( E ~ X  - p - 1)(2 - x) + p and b = px - p - 1. 

Inserting the roots of the auxiliary algebraic equation of equation (3) in terms of 
x and E and by substitution of it in (ll), after some algebraic manipulation the equation 
for the frequencies of the localised modes is 

E 2 p ( p  - 2)x3 + 2&(& + i)(-p2 + 2p + i)x2 

+ [ ( E '  + l)(p2 - 2p - 3 )  + 2&(p2 - 2p - 5]x + 8 ( ~  + 1) = 0. (12) 

In (12) roots can appear that do not satisfy the localisation condition, so that the 
roots must be checked for appropriateness. The negative root when its exists has no 
physical meaning. The value of El.* (equation (11)) can be calculated. First notice 
that the equation of motion of the atoms m at and M at y o  determines one of the 
constants in terms of the other. Since one of the constants is arbitrary, any constant 
multiple of y ,  and x, is also a solution of this boundary value problem. The arbitrary 
constant can be used for normalisation. 

For the special case m = M(E = 1) of the monatomic lattice, equation (12) supplies 
results that are in accordance with a previous calculation given by Montroll and Potts 
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[2], using the Green function method, and by Andrade and Borau [41], using a 
heuristic solution. If the difference equations method is applied to this monatomic 
model the same results are obtained [32]. 

It is interesting to note that the frequencies of the localised modes given by (12) 
return to the edges of the branches as p-+ 1. In the case p = 1 the eigenfrequency 
equation has three roots which correspond with the frequencies of the edges of the 
branches of the perfect lattice. 

The results of solving the eigenfrequency equation of the localised modes (equation 
(12)) are shown in figure 8. The localised mode frequency depends on the force- 
constant impurity K' and the relative magnitudes of the masses M and m of the perfect 
lattice. This dependence is summarised for both cases when the mass M is larger than 
the mass m ( E  > 1) or vice versa (E < 1): If the force-constant impurity K' is larger 
than the force constant K of the perfect.lattice ( p  < 1), two modes, a local mode with 
frequency situated above the optical branch and a gap mode with frequency situated 
in the forbidden gap of the modes of the perfect lattice, are generated. When the 
force-constant impurity K' is less than the force constant K of the perfect lattice 
(p  > l) ,  there is a gap mode. The frequency of the local mode is larger if the impurity 
constant K' increases, and for K' -+ cc it rises to a very high value; for K' -+ K ,  this 
frequency tends to the maximum frequency of the optical branch of the normal modes 
in the perfect lattice. The gap mode frequency ranges from the value 

a ,  = ( 3 ~ *  + 1 0 ~  + 3) + [ ( 3 ~ ~  + ~ O E +  3)2 - 6 4 ~ ( ~  + 1 ) 2 ] " 2 / 4 ~ ( ~  + 1) 

when E > 1 or the value 

bl = ( 3 ~ ~  + 3 0 ~  + 3) - [ ( 3 ~ '  + 1 0 ~  + 3)2 - 6 4 ~ ( ~  + 1)2]1 '2 /4~(~  + 1) 

when E < 1, for K' -+ E, to the maximum frequency of the acoustic mode of the perfect 
lattice for K' = K ;  and from the minimum frequency of the optical branch for the 
normal modes of the perfect lattice when K' = K to the frequency of the surface mode 
when K' = 0. 

In figures 9, 10 and 11 the maximum atomic displacements of the localised modes 
are plotted as a function of the positions of the atoms. The eigenvectors show simple 
spatial dependence. It is clear from figure 9 that in the case of the local mode all atoms 
move against each other. For K' + K the form of the mode is exactly like the mode 
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impurity force constant is larger than the force 
constant of the perfect lattice. 

Figure 10. Eigenvectors for gap modes when the 
impurity force constant is larger than the force 
constant of the perfect lattice. 
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of maximum frequency of the optical branch in a perfect lattice, and for K' +. x ,  this 
vibration type shows two atoms with amplitude different from zero. They are the 
atoms linked by the force-constant impurity. In this case the atom with larger mass 
has an amplitude of displacement shorter than the atom of lighter mass. For the gap 
mode in the case p < 1 notice from figure 10 that this mode evolves in shape in a 
simple form, from the form of the mode of maximum frequency in the acoustic branch 
of the perfect lattice for p = 1, when only the atoms with larger mass have an amplitude 
different from zero, to the mode that is similar in shape when K' + CE. to the Wallis 
type 'surface mode' [40]. Though the maximum atomic displacements have the same 
direction as in the 'surface mode' only the two atoms linked by the constant impurity 
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K' have the same amplitude. The nearest neighbour to the impurity K' with the larger 
mass has the maximum atomic displacement in the lattice. Thus, in this mode the 
maximum atomic displacements of the two atoms of masses m and M of the lattice 
are different. Finally, the shape of the gap mode when p > 1, figure 11, evolves from 
the form of the mode of minimum frequency in the optical branch of the perfect lattice 
when p = 1 to the surface mode when p -+ W .  In the latter case when K' = 0 there are 
two semi-infinite lattices with surfaces so that in the semi-infinite lattice with lighter 
mass at the surface there appears a surface mode, and in another semi-infinite lattice 
with heavier mass at the surface there are no localised modes. For this limit all the 
atoms in the latter semi-infinite lattice have zero amplitude. 

The behaviour of the present model of imperfection in the diatomic lattice is not 
markedly different from the behaviour of other models previously studied. One local 
mode was found when the value of force-constant defect is larger than the value of 
the force constant of the perfect lattice. One gap mode was obtained for any value of 
the force-constant defect. The shape of the eigenvector for this gap mode shows that 
indeed there are two different gap modes, one when p > 1 and another when p < 1. 
It should be pointed out that a single force-constant defect in a diatomic linear chain 
with nearest-neighbour interactions can never produce an in-branch localised mode. 

4. Conclusions 

The lattice dynamics for a diatomic lattice with nearest-neighbour interactions was 
examined by using the difference equations method. Specific results were obtained in 
the case of one dimension. Therefore it was demonstrated that a closed analysis for 
the lattice structure is possible through finite difference techniques. The application 
of the approach is quite systematic and the procedure is essentially the same as for 
ordinary differential equations. 

As a first result, the general solution of the diatomic lattice was obtained analytically 
via the operator method. This contains three different sets of solution types, i.e. 
sequence (4a ) ,  edge branch (4b )  and periodic (4c) .  An analysis of the range of 
frequencies in which the different sets of the general solution appear has been given. 
Although the distinct sets of the general solution had already been employed before 
by a large number of workers [l-251, apparently it is the first time that this general 
solution has been obtained without heuristic propositions and in a systematic way. It 
is of great importance, because in the eigenfunction method, this general solution 
supplies the mathematical basis which must be used in characteristic value problems. 
Also, the density of modes or frequency distribution function for the perfect lattice 
was calculated. 

Furthermore, a theory to study localised vibrational modes in a lattice with local 
imperfection was presented. 

In order to apply the technique, the frequencies and the forms of the localised 
vibrational modes when the local imperfection model is a single isotopic mass or an 
anomalous force constant were calculated. All results in these cases were obtained 
firstly in a simpler and more straightforward manner than those calculated with all 
other mathematical methods mentioned above [2, 6, 17, 22, 35-38) and secondly for 
the first time. Notice that in this work the author tried mostly to underline the 
methodological side of the problem, and naturally could not dwell upon the major 
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part of the cases with other different imperfection models. These are necessary, since 
they can be applied to understand optical effects in real crystals [27,28]. 

Finally, in spite of the fact that only one class of diatomic linear lattice was 
examined here, it seems that this method could have advantages and profound 
significance in the analysis of the lattice dynamics for other more complex lattices. 
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